China Best Sales ZDR Helical Planetary Gearbox for Servo Motor supplier

Product Description

ZDR Helical Planetary Gearbox for Servo Motor


High precision planetary gearbox matched with serve motor, stepping motor are widely used. Lowest backlash<3"); High output torques; High efficiency(96%); Honed toothings; 22 ratios I=3, …., 512; Low noise(<65dB(A)); Any mounting position; Easy motor mounting; Life time lubrication; Figure diameters 40, 60, 80, 120, 160mm. More options.

Planetary gearbox:
ZDE: Precision planetary-round flange output
ZDF: Precision planetary-square flange output
ZDWE: Precise planetary-right angle round flange output
ZDWF: Precise planetary-right angle square flange output
ZDS: Precise planetary-high rigidity, low back lash
 

ZDE round mounting flange
ZDWE right angle input round mounting flange
ZDF square mounting flange
ZDWF right angle input square mounting flange
ZDS high stiffness series
Gear Ratio:  
single stage 3, 4, 5, 8, 10
two stages 9, 12, 15, 16, 20, 25, 32, 40, 64
three stages 60, 80, 100, 120, 160, 200, 256, 320, 512

Company Information

FAQ
Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you ! /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Power, Electronic
Phase: Single
Core: Shell-type Transformer
Cooling Method: Oil-immersed Type Transformer
Winding Type: Separated Winding Transformer
Certification: ISO9001, CCC, CCC, CE, UL. RoHS
Customization:
Available

|

Customized Request

helical gearbox

Using Helical Gearboxes for Speed Reduction and Speed Increase

Yes, helical gearboxes can be used for both speed reduction and speed increase in various applications. The design of helical gears allows them to transmit motion and power between non-parallel shafts while changing the rotational speed.

Speed Reduction: When the driving gear (pinion) has fewer teeth than the driven gear, the gear ratio leads to speed reduction. This is commonly used in applications where the input speed needs to be decreased while increasing the output torque. For example, helical gearboxes are often employed in conveyor systems to reduce the speed of the motor while maintaining sufficient torque to move heavy loads.

Speed Increase: Helical gearboxes can also achieve speed increase by having the driving gear (pinion) with more teeth than the driven gear. This configuration is less common but can be used to increase the output speed while sacrificing some torque. Speed increase applications are typically seen in scenarios where higher speeds are required, such as in certain types of machinery or industrial processes.

It’s important to note that while helical gearboxes can perform both speed reduction and speed increase, the specific gear ratios and configurations need to be carefully chosen to ensure efficient and reliable operation for the intended application.

helical gearbox

Considerations for Designing Helical Gearboxes for Heavy-Duty Applications

Designing helical gearboxes for heavy-duty applications requires careful consideration of various factors to ensure reliable and efficient operation under high loads and demanding conditions. Here are the key considerations:

  • Load Capacity: Heavy-duty applications involve substantial loads. The gearbox must be designed to handle these loads while preventing premature wear and failure. Calculations of the load distribution, contact stresses, and material strength are crucial.
  • Material Selection: High-strength and durable materials are essential for heavy-duty gearboxes. Alloy steels or special heat-treated materials are often chosen to provide the necessary strength and resistance to fatigue and wear.
  • Gear Tooth Design: Optimal gear tooth profiles, such as optimized helix angles and tooth modifications, contribute to smoother engagement and reduced stress concentrations. This enhances the gearbox’s ability to handle heavy loads without excessive wear.
  • Bearing Selection: Robust and high-capacity bearings are necessary to support the heavy loads and provide reliable shaft support. The bearings must be able to withstand both radial and axial forces generated during operation.
  • Lubrication: Adequate lubrication is critical for heavy-duty gearboxes. Lubricants with high load-carrying capacity and extreme pressure properties are chosen to ensure proper lubrication under heavy loads and to reduce friction and wear.
  • Heat Dissipation: Heavy-duty applications can generate significant heat due to friction and load. Efficient heat dissipation mechanisms, such as cooling fins or oil cooling, should be incorporated into the gearbox design to prevent overheating and thermal damage.
  • Sealing: Effective sealing is necessary to prevent contaminants from entering the gearbox and to retain lubricants. Seals must be capable of withstanding the conditions of the application, including high loads, vibrations, and potential exposure to harsh environments.
  • Efficiency: Although heavy-duty applications prioritize load capacity, achieving acceptable levels of efficiency is still important to minimize energy losses and heat generation. Proper gear tooth design and high-quality manufacturing contribute to better efficiency.
  • Structural Integrity: The gearbox housing and components must be designed with structural integrity in mind. Rigidity and robustness are required to prevent distortion or failure of components under heavy loads.
  • Reliability and Serviceability: Heavy-duty gearboxes should be designed with reliability and ease of maintenance in mind. Access to critical components, such as gears and bearings, for inspection and replacement is important to minimize downtime.

Conclusion: Designing helical gearboxes for heavy-duty applications involves a comprehensive approach that addresses load capacity, material selection, gear tooth design, lubrication, heat dissipation, sealing, efficiency, structural integrity, and serviceability. By carefully considering these factors, engineers can create gearboxes that deliver exceptional performance and longevity in demanding industrial settings.

helical gearbox

Helical Gear Meshing and Its Benefits

Helical gear meshing refers to the engagement of two helical gears with inclined teeth. The teeth are cut at an angle to the gear axis, creating a helix shape. When these gears mesh, the inclined teeth gradually come into contact, allowing for smoother and quieter operation compared to straight-toothed gears.

The benefits of helical gear meshing include:

  • Reduced Noise: The gradual contact between helical gear teeth minimizes impact and noise during engagement, resulting in quieter operation. This is particularly advantageous in applications where noise reduction is essential, such as industrial machinery and automotive transmissions.
  • Smooth Operation: Helical gears provide smoother and more continuous motion due to the gradual engagement of teeth. This feature makes them suitable for applications that require precise and controlled movement, such as CNC machines and conveyor systems.
  • Higher Load Capacity: The helical tooth geometry allows for greater tooth contact area, distributing the load over a larger surface. This results in higher load-carrying capacity and improved durability, making helical gears suitable for heavy-duty applications.
  • Efficient Power Transmission: Helical gears transmit power more efficiently due to their smooth engagement and increased contact area. This efficiency contributes to reduced energy consumption and heat generation in gearboxes.
  • Less Vibrations: The gradual meshing of helical gears reduces vibrations, resulting in smoother operation and reduced wear and tear on gear teeth and bearings. This is especially important for extending the lifespan of the gearbox.

Overall, helical gear meshing offers numerous benefits, including reduced noise, smoother operation, higher load capacity, efficient power transmission, and reduced vibrations. These advantages make helical gears a popular choice in various industrial applications where performance, durability, and reliability are crucial.

China Best Sales ZDR Helical Planetary Gearbox for Servo Motor   supplier China Best Sales ZDR Helical Planetary Gearbox for Servo Motor   supplier
editor by CX 2024-02-02

Recent Posts