China Good quality Kaf Series Hardened Tooth Surface Helical Bevel Gearbox with Inline Variable Frequency Motor best automatic gearbox

Product Description

KAF Series Hardened Tooth Surface Helical Bevel Gearbox with Inline Variable Frequency Motor

Product Description

K series gearbox is 1 kind of Helical Bevel type gearbox ,it is designed based on modularization , which bring many difference kinds of combinations ,mounting types ,and structure designs .The detail classification of ratio can meet various of working condition .High Transmission efficiency ,low energy consumption, superior performance . The hard tooth surface  gear use the high quality alloy steel , the process of carburizing and quenching, grinding ,which give it follow characters : Stable transmission , low noise and temperature  ,high loading ,long working life.  Reinforced high rigid cast iron box; The hardened gear is made of high-quality alloy steel. Its surface is carburized, quenched and hardened, and the gear is finely ground. It features stable transmission, low noise, large bearing capacity, low temperature rise, and long service life. Performance and characteristics,which widely use for industry equipment of metallurgy ,Building Material , Chemical , Mining , Oil, Transportation , Papermaking , Sugar making , engineering Machines ,etc.

 

1.Technical data:

Product Name KAF Series Hardened Tooth Surface Helical Bevel Gearbox with Inline Variable Frequency Motor
Gear material 20CrMnTi alloy steel
Color Blue Silver  Customerized 
Case Material   Cast iron HT200 
Gear Processing   Grinding finish by HOFLER Grinding Machines
Noise Test Below 65dB
Brand of bearings C&U bearing, ZWZ,LYC, HRB, CZPT ,etc
Brand of oil seal NAK or other brand
Temp. rise (MAX) 40ºC  
Temp. rise (Oil)(MAX 50ºC  
Vibration ≤20µm
Housing hardness HBS190-240
Surface hardness of gears HRC58°~62 °
Gear core hardness HRC33~40
Machining precision of gears 5 Grade
Lubricating oil GB L-CKC220-460, Shell Omala220-460
Heat treatment Carburizing, Quenching etc
Efficiency 95%~96% (depends on the transmission stage)
Backlash ≤20Arcmin  

2. Installation type and output mode:
    bottom seated type and large and small flange type installation, CZPT shaft output.

3. Input mode:
    direct motor, shaft input and connecting flange input.

4. Reduction ratio:
    5.36~17396

5. Average efficiency:
     95%

6.Technical parameters:
    Coaxial output 
    Power: 0.12KW~200KW  
    Torque: 10N · m ~ 50000N · m  
    Output speed: 7 ~ 415r/min

7. Model of K series reducer:
    KAF37, 47, 57, 67, 77, 87, 97, 107,127, 157
 

Detailed Photos

 

 

Certifications

 

Packaging & Shipping

 

Installation Instructions

Company Profile

< ABOUT TILI

< WORKSHOP
 

< QUALITY CONTROL

 

 

FAQ

 

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of reducer.

Q 2:Can you do OEM?
A:Yes, we can. We can do OEM  for all the customers .if you want to order NON-STANDERD speed reducers,pls provide Drafts, Dimensions,      Pictures and Samples if possible.

Q 3: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances. 

Q 4: Do you have inspection procedures for reducer?
A:100% self-inspection before packing. 

Q 5: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. 

Q 6:How to choose a gearbox? What if I don’t know which gear reducer I need?
A:You can refer to our catalogue to choose the gearbox or we can help to choose when you provide,the technical information of required output torque, output speed and motor parameter etc. Don’t worry, Send as much information as you can, our team will help you find the right 1 you are looking for.

Q 7: What information shall we give before placing a purchase order?
A:a) Type of the gearbox, Size , Transmission Ratio, input and output type, input flange, mounting position, motor information and shaft deflection etc. b)Housing color.c) Purchase quantity. d) Other special requirements

Q 8:What is the payment term?
A:You can pay via T/T(30% in advance as deposit before production +70% before delivery

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Right Angle
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step
Customization:
Available

|

Customized Request

helical gearbox

Precision and High-Accuracy Applications of Helical Gearboxes

Helical gearboxes are well-suited for precision and high-accuracy applications due to their unique design and performance characteristics:

  • Helical Gearing: The helical gears in these gearboxes offer smooth and continuous meshing, resulting in reduced backlash and improved positioning accuracy.
  • Efficiency: Helical gearboxes are known for their high efficiency, which minimizes energy losses and heat generation. This is crucial for maintaining precision in applications where even small deviations can have significant impacts.
  • Noise and Vibration: The helical gear tooth engagement helps in reducing noise and vibration levels, making them suitable for environments where quiet operation is required.
  • Load Distribution: Helical gears distribute load across multiple teeth, minimizing localized wear and extending the lifespan of the gearbox.
  • Smooth Motion: Helical gearboxes provide smoother motion transitions, which is crucial in precision applications where jerky or sudden movements are undesirable.
  • Positional Accuracy: The reduced backlash and improved meshing characteristics of helical gears contribute to higher positional accuracy, making these gearboxes ideal for applications such as CNC machines, robotics, and medical equipment.
  • Compact Design: Helical gearboxes can achieve high gear ratios in a relatively compact form factor, making them suitable for applications where space is limited.

Examples of precision applications where helical gearboxes are commonly used include CNC machining, robotics, semiconductor manufacturing, medical equipment, and metrology devices. The combination of efficiency, smooth operation, and accuracy makes helical gearboxes a preferred choice for achieving consistent and reliable performance in such applications.

helical gearbox

Considerations for Designing Helical Gearboxes for Heavy-Duty Applications

Designing helical gearboxes for heavy-duty applications requires careful consideration of various factors to ensure reliable and efficient operation under high loads and demanding conditions. Here are the key considerations:

  • Load Capacity: Heavy-duty applications involve substantial loads. The gearbox must be designed to handle these loads while preventing premature wear and failure. Calculations of the load distribution, contact stresses, and material strength are crucial.
  • Material Selection: High-strength and durable materials are essential for heavy-duty gearboxes. Alloy steels or special heat-treated materials are often chosen to provide the necessary strength and resistance to fatigue and wear.
  • Gear Tooth Design: Optimal gear tooth profiles, such as optimized helix angles and tooth modifications, contribute to smoother engagement and reduced stress concentrations. This enhances the gearbox’s ability to handle heavy loads without excessive wear.
  • Bearing Selection: Robust and high-capacity bearings are necessary to support the heavy loads and provide reliable shaft support. The bearings must be able to withstand both radial and axial forces generated during operation.
  • Lubrication: Adequate lubrication is critical for heavy-duty gearboxes. Lubricants with high load-carrying capacity and extreme pressure properties are chosen to ensure proper lubrication under heavy loads and to reduce friction and wear.
  • Heat Dissipation: Heavy-duty applications can generate significant heat due to friction and load. Efficient heat dissipation mechanisms, such as cooling fins or oil cooling, should be incorporated into the gearbox design to prevent overheating and thermal damage.
  • Sealing: Effective sealing is necessary to prevent contaminants from entering the gearbox and to retain lubricants. Seals must be capable of withstanding the conditions of the application, including high loads, vibrations, and potential exposure to harsh environments.
  • Efficiency: Although heavy-duty applications prioritize load capacity, achieving acceptable levels of efficiency is still important to minimize energy losses and heat generation. Proper gear tooth design and high-quality manufacturing contribute to better efficiency.
  • Structural Integrity: The gearbox housing and components must be designed with structural integrity in mind. Rigidity and robustness are required to prevent distortion or failure of components under heavy loads.
  • Reliability and Serviceability: Heavy-duty gearboxes should be designed with reliability and ease of maintenance in mind. Access to critical components, such as gears and bearings, for inspection and replacement is important to minimize downtime.

Conclusion: Designing helical gearboxes for heavy-duty applications involves a comprehensive approach that addresses load capacity, material selection, gear tooth design, lubrication, heat dissipation, sealing, efficiency, structural integrity, and serviceability. By carefully considering these factors, engineers can create gearboxes that deliver exceptional performance and longevity in demanding industrial settings.

helical gearbox

Noise and Vibration Levels in Helical Gearboxes

Helical gearboxes are known for their relatively low noise and vibration levels compared to some other types of gears. However, there are still certain factors that can influence the noise and vibration levels in helical gear systems:

  • Helix Angle: The helix angle of helical gears helps to distribute the load over multiple teeth, reducing impact forces and resulting in smoother meshing. This contributes to lower noise and vibration levels.
  • Precision Manufacturing: High-precision manufacturing processes can ensure better gear tooth geometry and minimize irregularities that could lead to noise and vibration.
  • Lubrication: Proper lubrication is crucial for reducing friction and damping vibrations between gear teeth. Insufficient or improper lubrication can lead to increased noise levels.
  • Alignment: Proper alignment of gears is essential to minimize misalignment-induced noise and vibration. Misalignment can cause uneven tooth contact and lead to increased noise and vibration.
  • Load Distribution: Helical gears distribute loads over multiple teeth, which helps in reducing localized stresses and vibrations that could cause noise.
  • Material Quality: High-quality materials with good damping properties can help absorb vibrations and reduce noise transmission.
  • Operating Conditions: Factors such as operating speed, load, temperature, and gear backlash can influence noise and vibration levels.

Overall, helical gearboxes are designed to provide smoother and quieter operation compared to other gear types. However, the noise and vibration levels can still vary based on design, manufacturing quality, and operational factors. Engineers can optimize gear design and operating conditions to achieve the desired noise and vibration characteristics for specific applications.

China Good quality Kaf Series Hardened Tooth Surface Helical Bevel Gearbox with Inline Variable Frequency Motor   best automatic gearbox	China Good quality Kaf Series Hardened Tooth Surface Helical Bevel Gearbox with Inline Variable Frequency Motor   best automatic gearbox
editor by CX 2024-02-01

Recent Posts